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Abstract
A numerical method of high precision is used to calculate the energy
eigenvalues and eigenfunctions for a symmetric double-well potential. The
method is based on enclosing the system within two infinite walls with a large
but finite separation and developing a power series solution for the Schrödinger
equation. The obtained numerical results are compared with those obtained on
the basis of the Zinn-Justin conjecture and found to be in excellent agreement.

PACS numbers: 03.65.Ge, 02.30.Hq

1. Introduction

Quantum mechanical tunnelling through finite barriers is a well-established phenomenon in
theory and application. The symmetric double-well potential is one of the many examples
exhibiting this phenomenon. In this case, the energy splitting generated by tunnelling can be
estimated with the help of the well-known semi-classical WKB approximation and instanton
techniques (see for example [1]). However, to calculate this splitting accurately, one needs an
effective method of high precision.

In a series of papers, Zinn-Justin [2] developed a conjecture (to be termed ‘the Zinn-Justin
conjecture’) to determine the energy levels of a quantum Hamiltonian H, in cases where the
potential has degenerate minima. This conjecture takes the form of the generalized Bohr–
Sommerfeld quantization formulae. It has been applied, among other potentials, to the case
of the symmetric double well. In this case, the Hamiltonian is

H = −g

2

∂2

∂q2
+

1

g
V (q), where V (q) = 1

2
q2(1 − q)2. (1)
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It is obvious that this Hamiltonian is invariant under the transformation (q → 1 − q). The
energy eigenvalues for this potential can be obtained by finding a solution to the Zinn-Justin
conjecture equation:

1√
2π

�

(
1

2
− D(E, g)

) (
− 2

g

)D(E,g)

exp[−A(E, g)/2] = ±i. (2)

The function D(E, g) has a perturbative expansion in powers of g, of which the first few terms
are

D(E, g) = E + g
(
3E2 + 1

4

)
+ g2

(
35E3 + 25

4 E
)

+ O(g3). (3)

The other function A(E, g) receives contributions from the instanton expansion in the path
integral and its first few terms are

A(E, g) = 1

3g
+ g

(
17E2 +

19

12

)
+ g2

(
227E3 +

187

4
E

)
+ O(g3). (4)

The energy EN,± can be extracted from equation (2) by expanding in powers of g and in
the two quantities

λ(g) = ln

(
− 2

g

)
and ξ(g) = exp[−1/(6g)]√

πg
. (5)

The complete semi-classical expansion of EN,± has the form [4]

E±,N (g) =
∞∑
l=0

E
(0)
N,lg

l +
∞∑

n=1

(
2

g

)Nn (
(∓)

e−1/6g

√
πg

)n n−1∑
k=0

(ln(−2/g))k
∞∑
l=0

ε
(N,±)
nkl gl . (6)

The coefficients ε relevant to the numerical calculation have been explicitly calculated in [3].
The number N is the unperturbed quantum number which corresponds to

E±,N (g) = N + 1/2 + O(g). (7)

A detailed exposition of the above equations can be found in [4].
In [3], numerical calculations have been carried out and led to the energy eigenvalues for

the ground and first excited states, respectively, for g = 0.001,

E0,+(0.001) = 0.498 995 454 862 109 171 689 130 839 481 921 636 820 947 240 208

096 653 293 278 697 220 139 115 135 285 053 829 445 798 457 599 599

906 739 551 758 472 267 802 813 069 690 601 325 259 437 728 994 365

882 552 444 017 437 127 892 797 899 793, (8)

E0,−(0.001) = 0.498 995 454 862 109 171 689 130 839 481 921 636 820 947 240 208

096 653 293 278 697 220 139 129 839 929 595 580 370 812 277 499 244

848 259 367 436 475 768 328 848 353 551 134 663 063 098 233 151 885

233 080 862 284 780 527 221 010 367 282. (9)

The above numerical results have been obtained by lattice extrapolation using a modified
Richardson algorithm [3].

This tiny difference encourages us to seek for an independent but simple and direct
method, which allows us to obtain the energy eigenvalues for the potential in equation (1) and
compare them with the above numerical results. In addition, the present method allows us to
obtain an accurate description for the corresponding wavefunctions. This method has been
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previously applied to various potential functions with and without degenerate minima, leading
to results with high accuracy [5].

The method, as will be described in the next two sections, is based on power series
solution of the Schrödinger equation in a finite range. It has appeared from time to time in the
literature [6–8], but has not been developed to its maximum efficiency. We shall show that,
by using the computer algebra systems (for example, Mathemtica) which can deal with exact
numbers, the accuracy of the method can be substantially improved.

In the following section, for illustrative purpose, we explain our method by applying it
to the well-known exactly solvable harmonic oscillator potential and then extend it to the
symmetric double well.

2. Calculations and results

In this section we, first, consider the well-known exactly solvable harmonic oscillator. In this
case, the Schrödinger equation reads (h̄ = 1,m = 1)[

−1

2

d2

dq2
+ E − V (q)

]
�(q) = 0, (10)

where

V (q) = 1

2
q2. (11)

The exact energy eigenvalues and the corresponding eigenfunctions are

EN =
(

N +
1

2

)
, N = 0, 1, 2, . . . ,

�N(q) = 2− N
2 (N !)−

1
2 π− 1

4 exp

(
−q2

2

)
HN(q),

(12)

where HN(q) are the Hermite polynomials.
For the harmonic oscillator confined between two infinite walls at q = ±L, we develop

a power series solution in the form

�(q) =
∞∑
i=0

aiq
i . (13)

Substituting in equation (10), one gets the following recursion relation:

ai = ai−4 − 2Eai−2

i(i − 1)
, i �= 0, 1 and ai = 0 when i < 0. (14)

The symmetry of the potential implies that we have two types of solutions: the even solutions
obtained by imposing (ignoring normalization) a0 = 1, a1 = 0 and the odd ones by imposing
a0 = 0, a1 = 1. The energy eigenvalues are then obtained from the condition �(E,L) = 0
for both cases.

For numerical calculations, we approximate the power series in equation (13) with a
truncated one having a finite number of terms �I (E, q), where I is the number of non-vanishing
terms. The boundary condition for a specific value of L corresponds to �I(E,L) = 0. To get
the zeros of �I(E,L) with respect to E, we first plot a graph for �I(L,E) as a function of
E to locate where �I(L,E) changes sign. We then can use two nearby points containing one
single root as the initial iteration for the ‘bisection method’ to find the zeros. In doing this
we have used Mathematica package version 3 and also have relied extensively on its ability
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Figure 1. The normalized ground (left) and first excited (right) state wavefunctions for the bounded
harmonic oscillator for L = 8.

Table 1. The calculated first four energy levels for the bounded harmonic oscillator compared to
the unbounded one. 2L is the width of the well and I refers to the number of non-vanishing terms
in the truncated series of the wavefunction.

I L N EN Eexact
N = (N + 1

2 )

250 8 0 0.500 000 000 000 000 000 000 000 00 1
2

1 1.500 000 000 000 000 000 000 000 3
2

2 2.500 000 000 000 000 000 0000 5
2

3 3.500 000 000 000 000 000 000 7
2

to manipulate exact numbers. The stability of the numerical results to a certain degree of
accuracy is checked, for a particular L, by increasing I until the obtained value of E stays fixed.

In table 1 we present the calculated energies for the ground and first three excited states
for the bounded harmonic oscillator as compared to the exact results of the unbounded one.

The present method, as can be seen from table 1, reproduces for a large value of L, the
exact ones even for a moderate number of non-vanishing terms in the truncated series of the
wavefunction. Moreover, one can get an accurate description for the wavefunctions shown
in figure 1 which cannot be distinguished from the exact ones when drawn within the same
interval |q| � L = 8.

Now we apply the above-explained method to the double-well potential in equation (1).
For our convenience, we use the substitution q → q + 1

2 , so the potential in equation (1) now
takes the form

V (q) = 1
2 (q + 1/2)2 (q − 1/2)2 . (15)

This form of the potential has now inversion symmetry (q → −q) which is suitable for our
calculation. It should be evident that rewriting the potential in this form does not affect the
eigenvalues of the Hamiltonian in equation (1). As explained above, for this potential we
again use the power series expansion of the wavefunction in the finite range. The Schrödinger
equation, for the potential V (q) in equation (15), is[

g

2

d2

dq2
+ E − 1

g
V (q)

]
�(q) = 0, −L < q < L. (16)

In substituting the power series expansion,

�(q) =
∑

i

aiq
i, (17)
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Figure 2. The normalized ground (left) and first excited (right) state wavefunctions for the bounded
double-well potential with g = 1/1000.

in equation (16), one gets the following recurrence formula for the expansion coefficients, ai :

ai =
(

2

g

) 1
2g

[
ai−6 − 1

2ai−4 + 1
16ai−2

] − Eai−2

i(i − 1)
, i �= 0, 1 and ai = 0 when i < 0.

(18)

For L = 3, the obtained eigenvalues are

E0,+(0.001) = 0.498 995 454 862 109 171 689 130 839 481 921 636 820 947 240 208

096 653 293 278 697 220 139 115 135 285 053 829 445 798 457 599 599

906 739 551 758 472 267 802 813 069 690 601 325 259 437 728 994 365

882 552 444 017 437 127 892 797 899 793 989 220 053 606 978 041

386 525 573 028 377 235 024 167 171, (19)

E0,−(0.001) = 0.498 995 454 862 109 171 689 130 839 481 921 636 820 947 240 208

096 653 293 278 697 220 139 129 839 929 595 580 370 812 277 499 244

848 259 367 436 475 768 328 848 353 551 134 663 063 098 233 151 885

233 080 862 284 780 527 221 010 367 282 720 476 134 001 672 248

036 552 352 410 137 981 630 458 360. (20)

These values agree with the ones obtained from the numerical calculations based on the Zinn-
Justin conjecture. In figure 2 we present the ground and first excited state wavefunctions for
the bounded double-well potential for g = 1/1000, I = 4600 and L = 1.

3. Discussion

It is important to note the following generic remarks. First, a reason for the capability of the
present method is that for a bound state, the wavefunction is spatially localized which means
that the probability density (|�|2) has appreciable values in a finite region of space behind
which the probability density tends rapidly to zero. Thus, to a good approximation, it is,
therefore, reasonable to consider the corresponding problem in a finite interval, with a suitable
width, bounded by two infinite walls. The criteria for a suitable value of L can be quantitatively
given by the condition E � V (L). Second, from the WKB approximation, it can be made
plausible that the zeros of �(E,L) provide upper bounds for the energy eigenvalues while
the zeros of the derivative—with respect to q—� ′(E′, L) provide the lower ones; the same



6790 H A Alhendi and E I Lashin

finding can be proved in a rigorous way as shown in [9]. Thus, by matching the digits of the
two zeros, one can get an accurate energy eigenvalue up to the number of coincident digits. As
an example for the ground state of the bounded harmonic oscillator, with L = 8 and I = 250,
one gets

E = 0.500 000 000 000 000 000 000 000 001 436 270 705 475 576 590 375 659 826 757 972

824 824 621 785 332 078 167 891 514 939 744 867 648,

E′ = 0.499 999 999 999 999 999 999 999 998 540 554 357 327 868 209 274 465 258 622 103

903 146 216 005 437 303 539 479 001 558 808 137 418. (21)

The corresponding wavefunctions and their slopes are

�(E, 8) = 4.8 × 10−49, � ′(E′, 8) = 8.1 × 10−48,

�(E′, 8) = 2.6 × 10−14, � ′(E, 8) = −2 × 10−13.
(22)

After matching the digits of the two numbers in equation (21), one gets the ground-state
energy accurate up to 25 digits as shown in table 1. The remaining eigenvalues are obtained
by the same procedure. However, one should pay attention that this accuracy is expected to
be less than the accuracy of the bisection method. In this method, the accuracy estimation
is ε = (c − a)/2n where n, here, is the number of iterations, and c and a are the two points
enclosing only one root. In our case, we have taken for the ground state n = 200, c = 6

10
and a = 4/10, giving ε = 1.2 × 10−61. Finally, according to the WKB approximation, the
wave-function behaves for large q in the inaccessible region as

�WKB(q) ∝ 1

(V (q) − E)
1
4

exp

(
−

∫ q

qt

√
(V (q ′) − E) dq ′

)
, (23)

where qt is a turning point just left of the inaccessible region. The value of �WKB (q = 8) is
6.5×10−14, while for the truncated series solution of equation (13) it has the value 4.8×10−49

as given in equation (22). The reason for this huge difference is that the series solution is
valid and convergent as long as q is finite [10]. In addition to this, the energy eigenvalues as
extracted from the zeros of �(E,L) (for suitable L) result in a delicate cancellation between
terms of opposite signs in the power series solution.

One may suspect that using a series solution in the form

�(x) = exp(−bx2)
∑

j

aj x
j , (24)

may help improve the rate of convergence for the obtained eigenvalues. In contrast, one needs
more terms in the series expansion to achieve the same level of accuracy obtained by the series
solution of the form given in equation (13). The reason behind this stems from the fact that
any finite truncation for the series in the form given in equation (24) always decays, due to
the exponential factor, as q becomes large making the determination of the energy eigenvalues
less reliable, especially when the parameter b is large. As an example, when b = 1

2 we can
achieve the same accuracy reported in table 1 with the same number of non-vanishing terms
in the truncated series, while for b = 8 we need 600 non-vanishing terms to achieve the same
accuracy. Thus, the best thing which can be done is to work with the parameter b having zero
value. However, it should be kept in mind that both the series in equations (13) and (24) are
equivalent but only in the infinite sum limit.

We also study the effect of the parameter b in the case of the double-well potential given
by

V (x) = −10x2 + x4
(
in units h̄ = 1,m = 1

2

)
. (25)
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Table 2. Precision versus I and the parameter b.

b 0 1
2 1 2 3 4 5 10

I 750 750 750 500 500 500 500 500
Precision 100 100 150 150 200 200 200 300

Table 3. The parameter b versus I (number of non-vanishing terms).

b 0 1
2 1 2 3 4 5 10

I 125 100 90 90 90 90 90 200

As an example, when we work with the precision 100 digits, then we find for b = 0, I = 750
and L = 8, that the ground-state energy has the value (accurate up to 69 digits)

E0 = −20.633 576 702 947 799 149 958 554 837 431 508 765 315 946 057 735 513

905 710 311 428 9292. (26)

To achieve the same accurate energy determination for b = 10, we find that it is possible to
use 500 terms which is not considerably less than the case of b = 0. However, this comes
with the high cost of working with precision 300 digits. Working with such a high precision
renders the calculation slow. At intermediate values of b like 2, 3 and 4, we can use less terms
but with high precision as shown in table 2. According to our numerical investigations for the
case of the double well, in the finite range, the choice b = 0 is the best compromise between
the number of terms used and the degree of precision to get a more efficient calculation.

It is important to point out that in dealing with low-accuracy results (like nine digits),
one cannot decide which is better, to work with or without the parameter b. Furthermore,
employing the method in a non-efficient way may lead to wrong conclusions as in [8],
where it is emphasized that setting a non-vanishing value for the parameter b greatly reduces
the number of terms used. To clarify these points, we obtain for the potential given by
equation (25) the four first energy levels (E0 = −20.633 5767, E1 = −20.633 4568, E3 =
−12.379 5437, E4 = −12.375 6738) accurate up to 10 digits as presented in [8]; our results
(using L = 4.2) are summarized in table 3. It is evident from table 3 that one cannot say it
is a big advantage to use 90 terms (for b = 2) rather than 125 terms (for b = 0). However,
numerical studies clearly indicate that the situation becomes worse when b increases (for
b = 10 we need 200 terms). Another clear example is the pure quartic potential (V (x) = x4)

for which we get, for b = 0, L = 3.5 and I = 75, low-energy eigenvalues (the first five)
determined accurately up to nine digits while obtaining the same results for the choice b = 3
and I = 50. Furthermore, the tenth eigenvalue is determined accurately up to nine digits,
for L = 3.9, using I = 75 for b = 3, while I = 125 for b = 0. These findings are in
contradiction with what has been claimed in [8], where it was mentioned that one should use
about 2000 terms in the power series to determine the energy for the choice b = 0. Similar
findings occur for the potential V (x) = x2 + x8. In such a situation, for L = 2.5, we can use
125 terms in the power series solution for b = 0 and 75 terms for b = 5, while getting the
same accurate results up to nine digits.

The problem in the calculations found in [6, 8] comes from evaluating every term in
the power series to a certain precision, and then summing the series which leads to an error
accumulation, resulting in low-accuracy results despite using a large number of terms. In our
approach, we sum all terms in the power series exactly, and then only in determining the roots
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(energy) from the condition �I(E,L) = 0, do we resort to numerical calculation with a certain
precision. Although the ability of the computer algebra system to deal with exact numbers
was available from the early 1980s, it has not been used since then in such calculations.

4. Conclusion

In this paper we have presented an independent simple method leading to eigenvalues which
agree well with the recently obtained numerical results based on the Zinn-Justin conjecture
for the symmetric double-well potential. We have also included results with more significant
digits than reported. It has been applied to some other potentials to illustrate its capability, and
its precision has been compared with other calculations based on introducing an exponentially
decaying factor (e−bx2

). Several subtle points related to its precision have also been discussed
and clarified. The method we opted for also enables us to get an accurate numerical
determination of the corresponding wavefunctions.
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